Structural and functional dissection of the interplay between lipid and Notch binding by human Notch ligands
نویسندگان
چکیده
Recent data have expanded our understanding of Notch signalling by identifying a C2 domain at the N-terminus of Notch ligands, which has both lipid- and receptor-binding properties. We present novel structures of human ligands Jagged2 and Delta-like4 and human Notch2, together with functional assays, which suggest that ligand-mediated coupling of membrane recognition and Notch binding is likely to be critical in establishing the optimal context for Notch signalling. Comparisons between the Jagged and Delta family show a huge diversity in the structures of the loops at the apex of the C2 domain implicated in membrane recognition and Jagged1 missense mutations, which affect these loops and are associated with extrahepatic biliary atresia, lead to a loss of membrane recognition, but do not alter Notch binding. Taken together, these data suggest that C2 domain binding to membranes is an important element in tuning ligand-dependent Notch signalling in different physiological contexts.
منابع مشابه
Structural Analysis Uncovers Lipid-Binding Properties of Notch Ligands
The Notch pathway is a core cell-cell signaling system in metazoan organisms with key roles in cell-fate determination, stem cell maintenance, immune system activation, and angiogenesis. Signals are initiated by extracellular interactions of the Notch receptor with Delta/Serrate/Lag-2 (DSL) ligands, whose structure is highly conserved throughout evolution. To date, no structure or activity has ...
متن کاملComparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation
Objective(s): NOTCH signaling pathway is well known for its role in cell fate, cell survival, cell differentiation, and apoptosis. Some of the NOTCH signaling genes are critical for endometrial function and implantation in animals and appear to play a similar role in humans. The purpose of the current study was to investigate the potential roles of some main components of the NOTCH family in hu...
متن کاملStructural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster
In metazoans, the highly conserved Notch pathway drives cellular specification. On receptor activation, the intracellular domain of Notch assembles a transcriptional activator complex that includes the DNA-binding protein CSL, a composite of human C-promoter binding factor 1, Suppressor of Hairless of Drosophila melanogaster [Su(H)], and lin-12 and Glp-1 phenotype of Caenorhabditis elegans. In ...
متن کاملThe Effect of Inclined U-Notch Geometry on Mode Ratio (KII/KI) under Mixed Mode (I + II) Loading
In inclined U-notches, the mixed mode (I + II) loading occurs and the mode ratio can be increased by varying the notch angle. In this paper, the effect of the inclined U-notch geometry, i.e. the notch depth, the notch angle, the notch root radius, and the position of the notch with respect to supports, on the mode ratio (KII/KI) have been studied. Three-point bending and plane strain condition ...
متن کاملXylosylation of the Notch receptor preserves the balance between its activation by trans-Delta and inhibition by cis-ligands in Drosophila
The Drosophila glucoside xylosyltransferase Shams xylosylates Notch and inhibits Notch signaling in specific contexts including wing vein development. However, the molecular mechanisms underlying context-specificity of the shams phenotype is not known. Considering the role of Delta-Notch signaling in wing vein formation, we hypothesized that Shams might affect Delta-mediated Notch signaling in ...
متن کامل